

1

BH3

TECHNICAL NOTE

(Last updated on 2020/04/27)

(Version : 1.6)

2

BiZright Technology Inc.

1. About this product .. 3

2. Overview of BH3 ... 3

3. Simple UPS function by electric double layer capacitors 3

4. Real Time Clock .. 4

5. Stabilization of Power Supply .. 4

6. Heat Radiation measures of CPU .. 4

7. Noise/Electrostatic measures ... 4

8. Power off support .. 4

9. Activation of Watch Dog Timer .. 5

10. Hardware specification.. 5

11. Test result .. 6

12. Dimensions and part of each name... 8

13. Access to I/O connector and GPIO port .. 9

14. GPIO Assignment of General-purpose buttons 10

15. GPIO Assignment of General-purpose LED ... 11

16. Invalidation of General-purpose switch and General-purpose LED,

Reset control terminal switch... 12

17. About OS .. 14

18. Processing sequence of High-speed shutdown 16

19. RTC setting sequence .. 19

20. Set up of Watch Dog Timer ... 21

21. Sample source of programs using General-purpose switch 22

22. Sample of source of program using General-purpose LED 28

23. Revision Histories .. 31

3

1. About this product

Thank you for purchasing BH series / BH3. This product is a set embedded

the following items.

・Metal case with heat radiation pad

・Raspberry Pi3 Model B

・BiZright original circuit board

・AC adaptor（7.5V3A）

※*microSD card sold separately

2. Overview of BH3

BH3 is general-purpose embedded STB using Raspberry Pi3 Model B which

has up-graded its functions as changing our reputable device (BH2) releasing

assigned GPIO to the general-purpose switch.

Raspberry Pi has been especially adopted in IoT field in recent; however there

are lots of problems that need to be cleared to run in the actual environment

after finishing prototype as normal shut down in power off, power breaker

interlock, system time retention, stabilization of supper supply,

countermeasures of noise / electrostatic, watch dog timer.

BH3 was especially developed focusing on robustness STB that can be used

in the field.

3. Simple UPS function by electric double layer capacitors

As RaspberryPi works under Linux base OS, it needs to be operated with

adequate shutdown-process.

BH3 detects a loss of power-supply and generates the interrupt signal to

Raspberry Pi’s CPU.

BH3 has a simple UPS function using electric double layer capacitors running

under no power operation about 30 sec. (depending on the environment) , once

4

the shutdown occurs that makes safely shutdown process possible and

drastically reduce the possibility of OS crush / Micro SD card crush. BH3

realizes adopting RaspberryPi for practical situations where industrial single

board computers have been used formerly.

4. Real Time Clock

Most of the applications as data-logging require the accurate date and time

information. BH3 is equipped with battery-backed RTC.

5. Stabilization of Power Supply

Raspberry Pi normally supplies the power from micro USB, yet the power

supply may become unstable due to the problem of internal resistance in

connector when its current consumption increases. However, this problem

does not occur since BH3 supplies the power from the I/O bus port. Moreover,

BH3 secures the stable operating voltage because it has a power regulator

inside.

6. Heat Radiation measures of CPU

BH3 is equipped with the heat conduction pad on the case and adheres it to

the CPU to promote heat radiation more effectively. Since it has passed the

operation test under the external environment of 50℃, it can be used with

confidence in the field.

7. Noise/Electrostatic measures

Countermeasures such as static electricity, lightning surge and GPIO line

noise are taken by using the metal case and the signal grounding.

8. Power off support

High-speed shutdown is possible by receiving the signal of power-off detection

(GPIO23) at power off. It is possible to execute any commands (such as

original programs) at the time of high-speed shutdown.

5

9. Activation of Watch Dog Timer

Enables the Watch Dog Timer mounted on Raspberry Pi to reboot the CPU by

the hardware layer even if the CPU goes out of control. It is possible to

reduce the possibility of the system hung up.

10. Hardware specification

OS Raspbian Jessie or later.

 (BH set up tools : supplied separately)

CPU Raspberry Pi3 Model B

1.2GHz / 64-bit quad-core ARMv8 CPU

GPU 250 MHz / Broadcom VideoCore IV

Memory LPDDR2 SDRAM １GB

RTC MAXIM DS3231 I2C connection （pulled up at 10K

Ω）

Used GPIO2, 3

UPS Electric double layer capacitors

Video output HDMI (1.3 / 1.4)

Audio output 3.5mm / HDMI

USB port USB2.0×4

I/O connector 40 pin (Pin assignment is the same as original)

Network 10 / 100Mbps Ethernet

802.11n Wireless LAN

Bluetooth Bluetooth 4.1

Bluetooth Low Energy (BLE)

Card slot Micro SD Card slot

Storage Depends on MicroSD card

Power Supply AC100-240V、50/60Hz （When using dedicated AC

adaptor） DC 7.5V 3A

Dimensions (H)32mm x (L) 115mm×(W)115mm

Weight 420g （Without AC adaptor）

Operation guarantee

temperature

0～40 degree （No-conclusion -4 dews）

6

Operation guarantee

humidity

10%～80%

Power off detection GPIO23 L level

Reset control GPIO18

General-purpose

switch

Equipped with a center, up, down, left and right

momentary switches.

11. Test result

Testing Location : Local Independent Administrative Institution

 Hokkaido Research Institution Industrial Testing Site

 11-chone 19 Jyo Nishi, Kita-ku, Kita, Sapporo, Hokkaido

Lighting Surge Tolerance Test : Testing Equipment : Noise Research

Laboratory LSS-15AX-C3

Test

Contents

1KV of lightning surge one time positive and negative is

applied from AC line in 5 times at 20 sec. intervals; total 10

times.

Test

Result

Normal

Test

Contents

2KV of lightning surge one time positive and negative is

applied from AC line in 5 times at 20 sec. intervals; total 10

times.

Test

Result

Normal

Static electricity tolerance test : Testing Equipment : Noise Research

Laboratory ESS-2000 & Discharge gun TC=815R

Test

Contents

Indirect Discharge (Discharge 10 cm away from the devise)

Test 8KV * 20 times: Normal

7

Result 15KV * 20 times: Normal

Test

Contents

Direct Discharge(Discharge by contacting the discharge gun

directly to the devise)

Test

Result

4KV * 20 times: Normal

8KV * 20 times: Normal

However, the phenomenon has happened that the surface of the monitor

was disturbed for a moment and got it back to normal within one second in

both patterns during the discharge. It is presumed as the cause that the

synchronization of HDMI is lost for a moment due to the noise caused by

the high voltage pulse.

Low temperature constant temperature and humidity test for electronic

appliances : Test Equipment : Espec PL-4KP

Test

Contents

Operate the devise at 0℃ for 24 hours.

Test

Result

Normal

Test

Contents

Operate the device at 50℃ for 24 hours.

Test

Result

Normal

8

12. Dimensions and part of each name

Screw hole of back side conforms to VESA standard.

I/O connector/USB port/Ethernet can be closed with the attached lid.

Open the slide lid and insert the

Micro SD card directly into the

Raspberry Pi.

Power Supply

USB2.0 × 4

10/100Mbps Ethernet

HDMI port 3.5mm Jack output terminal DC in connector

32mm OS boot LED

General purpose LED

General-purpose Switch

89mm

I/O(40Pin)

Slide lid screw

Slide lid screw

115mm

9

13. Access to I/O connector and GPIO port

Can access to the I/O connector by removing the slide lid or the lid of the I/O

connector.

5V of I/O connector turns “ON” when the OS starts. 5V can be turned

ON/OFF by the value state of GPIO16.

(Example : Turn ON/OFF 5V of I/O connector by using gpio command of

Wiring Pi.)

gpio -g mode 16 out

gpio -g write 16 1 （I/O connector 5V ON）

gpio -g write 16 0 （I/O connector 5V OFF）

+5V

+3.3V +5V

GND GPIO21

10

14. GPIO Assignment of General-purpose buttons

① UP button： GPIO 17

② DOWN button： GPIO 27

③ LEFT button： GPIO 24

④ RIGHT button： GPIO 22

⑤ ENTER button： GPIO 25

◆PULLUP mode : enable Raspberry Pi biilt-in internal pull-up resister.

◆GPIO pin and GD connected to General-purpose buttons.

(External pull-up resister is not available.)

◆Show the value of H level(1) when not pressed, and L level(0) when

pressed.

◆Example of getting the value state from the command line.

◆Obtaining the value state of the up button by using gpio command of

Wiring Pi.)

1

2

3 4 5

11

gpio -g mode 17 input

gpio -g mode 17 up

gpio -g read 17

15. GPIO Assignment of General-purpose LED

① General-purpose LED： GPIO 12

◆When using a General-purpose LED, open the slide lid and confirm the

LED jumper pin is loaded.

(See [Disable General-purpose switch and General-purpose LED, reset

control terminal] for details.)

◆Set the L level (0) to turn on the General-purpose LED, and set the H

level (1) to turn off.

Example (Turn on/off of general-purpose LED by using gpio command of

Wiring Pi.)

1

12

gpio -g mode 12 out

gpio -g write 12 0 （General-purpose LED turn on）

gpio -g write 12 1 （General-purpose LED turn off）

16. Invalidation of General-purpose switch and General-purpose

LED, Reset control terminal switch

(In this product, 5V ON/OFF switching of

general-purpose switch, general-purpose

LED and I/O connecter is disabled by jumper

pin, and can use assigned GPIO port from the

I/O connector.)

Reset control terminal can change the

number of the GPIO port.

Enable to access the jumper pin by opening the slide lid.

JP-1 At the time of shipment, reset control and OS start up LED

control are set to GPIO 18. (pins 1 and 2 are connected)

It can change into GPIO5 by switching jumper pin; pins 2

and 3 to be connected.

LED Enable the general-purpose LED by inserting jumper pin.

If you remove the jumper pin, the General-purpose LED will

be disabled and GPIO12 will be available.

ENEXT If you remove the jumper pin, the 5V ON/OFF switching of

I/O connecter will be disabled and GPIO16 will be available.

When the time the jumper pin is removed, the 5V pin(2,4) of

I/O connecter will always be ON.

KU If you remove the jumper pin, the UP button will be disabled

and GPIO17 will be available.

ENEXT LED JP-1

13

KD If you remove the jumper pin, the DOWN button will be

disabled and GPIO17 will be available.

KL If you remove the jumper pin, the LEFT button will be

disabled and GPIO24 will be available.

KR If you remove the jumper pin, the RIGHT button will be

disabled and GPIO22 will be available.

KE If you remove the jumper pin, the ENTER button will be

disabled and GPIO25 will be available.

If you change the setting to JP-1 GPIO5, create the configuration file

“shutdownSensor.conf” under “/usr/local/sbin/ as following content, and save

it. After save the configuration file, the OS reboot is needed.

/usr/local/sbin/shutdownSensor.conf

Shutdown sensor config file

enrun pin = 5

14

17. About OS

Install the setup tools to your standard Raspbian.

With setup tools, the following functions will be appended.

◆High-speed shutdown process in a power down situation.)

Set RTC time to the System time at OS startup

◆Obtain the current time by using ntpdate, and set RTC time

Setting frequency: 30 min./hr when connecting to a network

◆Enable the Watch Dog Timer

Download the set-up tools shown below

http://dl.bizright.jp/bh/bh-tools-latest.tar.gz

(Supported OS: Raspbian Jessie or later)

Run the following command after install Raspbian 3.18 or later.

Install command of set-up tools

curl -O http://dl.bizright.jp/bh/bh-tools-latest.tar.gz

tar xfvz bh-tools-latest.tar.gz

cd bh-tools

./build

(*Installation of BH tools completed” is displayed when process is

completed properly.)

“sudo reboot

*Caution : Make sure to be connected to the Internet to execute git and apt-

get in the build file.

If you already installed the set-up tools, and update your OS version, run

this command as well.

http://dl.bizright.jp/bh/bh-tools-latest.tar.gz

15

List of libraries and packages installed simultaneously is listed below.

◆Wiring Pi

◆ntpdate

◆watchdog

◆Install upstart if systemd is not installed

◆Install git if git is not installed

If you need uninstall the set-up tools, execute the following command.

Uninstall commands of set-up tools

cd bh-tools (*Move to the directory used during installation.)

./build uninstall

（*Success if “Uninstall of BH tools completed.”）

cd wiringPi

./build uninstall (*When not using “Wiring Pi” in the future.)

sudo apt-get -y remove ntpdate (*When not using “ntpdate” in the future.)

sudo apt-get -y remove watchdog (When not using “watchdog” in the

future.)

sudo reboot -f

*When if cannot install due to set-up error

If normal installation cannot be finished due to the Error:WDT module is

unknown, BH may not have reboot after doing “apt-get update

After executing “sudo reboot”, reinstall the set-up tools.

16

18. Processing sequence of High-speed shutdown

Processing sequence of High-speed shutdown on BH3.

1.Change the 23rd(INPUT mode) of GPIO from H level(1) into L level(0).

2.Resident program” /usr/local/sbin/shutdownSensor” excecutes the

following script in response to step1 interrupt signal.

⚫ /usr/local/sbin/fastshutdown

⚫ /usr/local/sbin/__fastdown-function(called from fastshutdown)

3.Output the start time to the log to measure the processing time of High-

speed shutdown.

Output destination : /var/log/fastshutdown.log

Start time: (content of /proc/uptime)

4.Turn OFF the signal of the display

5.Execute the script “/usr/local/sbin/system-stop-use-usb”

(Timeout after 10 sec. and forcibly shutdown.)

6.Power OFF of the USB controller. Disable the devices connected to wired

LAN /USB to reduce power consumption during the shutdown process.

7.Execute the script “/usr/local/sbin/system-stop”.

(Timeout after 10 sec. and forcibly shutdown.)

8.Save the current time to enable operation even when the RTC is not

connected.

9.Terminate all the processes normally

10.Forcibly make the on memory-data flush out into the disk.

11.Forcibly terminate all the processes.

17

12.Output end time to the log to measure the processing time of High-

speed shutdown.

Output Destination : /var/log/fastshutdown.log

End time: (contents of /proc/uptime)

13.(Forcibly make the on memory-data flush out into the disk.)

14.(Remount all mounted file system as the read-only mode.)

15.(When if GPIO 23rd(INPUT mode) is H level(1), system will be rebooted

and shutdown will be executed the system if its L level(0).)

 (Assuming the user turns off the AC power accidentally, and a case that

the AC power restored after the shutdown process stated running.)

If you want to execute any command “programs created independently”

during the high-speed shutdown process, add any command to the following

script.

/usr/local/sbin/system-stop

If you want to perform the process of net work communication or using USB

(as using wired LAN/wireless LAN, and saving file to the memory) in any

commands during the high-speed shutdown process, add any commands to

the following script without writing 「/usr/local/sbin/system-stop」.

/usr/local/sbin/system-stop-use-usb

Please complete the process of “system-stop” script and “system-stop-use-usb”

script within 10 sec. After 10 sec. passed, it will be timeout and force-quit

an application. The timeout sec. will be changeable with following script.

/usr/local/sbin/__fastdown-function

timeout -s 9 number of sec. for timeout /usr/local/sbin/system-stop-use-usb

timeout -s 9 number of sec. for timeout /usr/local/sbin/system-stop

When perform the closing process within original programs at high-speed

shut down, close the file in response to the interruption of the kill signal.

18

Make the original programs at high-speed shut down receive the kill signal

by adding as killall commands to “system-stop” script or “system-stop-use-usb”

script.

Additional example:

/usr/local/sbin/system-stop

killall (original program name)

Keep the GPIO #18(OUT mode) H level(1) of the resident program at the time

of startup(OS startup), and remain until the shutdown complete to prevent

unexpected reset occurred during OS boot.

19

19. RTC setting sequence

At OS boot (/usr/local/sbin/set-rtc)：

1.Initializes the I2C connection of RTC

2.Set the RTC time to the system time

3.If the result of step 2 is failed, set the last shutdown time to the system

time using “fake-hwclock”

Execute at the network connection and each 30 min./hr(every hour).

1.Check duplicate launches : if running already, stop the process

2.Wait for 20 sec.; “ntpdate” tends to be filed right after connected the

network.

3.Execute “/usr/sbin/ntpdate-debian” command to set the system time via

network.

4.If the step 3 succeeded, set the system time to RTC time.

5.If the step 3 succeeded, wait for 10 min. to prevent “ntpdate” from

running continuously.

The interval of the process for ntpdate is changeable with following file.

/etc/cron.d/ntpdate each 30 min./hr(every hour).

30 * * * * root /etc/network/if-up.d/ntpdate > /dev/null 2>&1

If assign NTP server, revise the following file.

/etc/default/ntpdate

NTPSERVERS="ntp.nict.jp ntp.jst.mfeed.ad.jp ntp.ring.gr.jp"

If manually execute nptdate and set he system time to RTC, execute the

following commands.

sudo /usr/sbin/ntpdate-debian

sudo hwclock -w

20

Delete the following files if not connected to the network or no need to set

up the system time by using ntpdate.

/etc/cron.d/ntpdate

/etc/network/if-up.d/ntpdate

Execute the following commands to set any time to the RTC.

sudo date -s 'time (example : 2015-06-19 00:00:00)'

sudo hwclock -w

Execute the following command to show the RTC time.

sudo hwclock -r

Execute the following command to set the RTC time to the system time.

sudo hwclock -s

21

20. Set up of Watch Dog Timer

Enables Watch Dog Timer by executing the following commands at the time

of using set up tools.

Change the setting file by installing watchdog program, then automatically

download bcm2708_wdog module(if earlier Raspbian 4.2) or bcm2835_wdt

module(If later Raspbian 4.3) at the time of OS startup.

sudo apt-get install watchdog

sudo vi /etc/default/watchdog

Change before:

 watchdog_module="none"

After change (Raspbian version earlier 4.2)

 watchdog_module="bcm2708_wdog"

After change (Raspbian version later 4.3)

 watchdog_module=" bcm2835_wdt "

sudo vi /etc/watchdog.conf

Change before:

#max-load-1= 24

#watchdog-device = /dev/watchdog

After change:

max-load-1= 24

watchdog-device = /dev/watchdog

watchdog-timeout = 10

sudo vi /etc/modules

Add to last line (Raspbian version earlier 4.2):

bcm2708_wdog

Add to last line (Raspbian version later 4.3):

bcm2835_wdt

sudo vi /lib/systemd/system/watchdog.service

Add to last line (Add under [Install] in the file)

 WantedBy=multi-user.target

sudo update-rc.d watchdog enable

sudo reboot

22

21. Sample source of programs using General-purpose switch

Sample source of programs showing each name of the button when you push

the General-purpose switch.

This sample source can be downloaded from below.

http://dl.bizright.jp/bh/bhButton.zip

When if use “Wiring Pi” by C language

bhButton.c

#include <stdio.h>

#include <sys/time.h>

#include <wiringPi.h>

#define GPIO_UP 17

#define GPIO_DOWN 27

#define GPIO_RIGHT 22

#define GPIO_LEFT 24

#define GPIO_ENTER 25

#define BUTTON_USLEEP 50000

#define RESET_SEC 5

int setupGpio();

void isrUp();

void isrDown();

void isrRight();

void isrLeft();

void isrEnter();

void isrButton(int pin, char *button);

// Button name currently pressed

static volatile char *currentButton = NULL;

// Time pressed

static volatile long currentButtonTime = 0;

http://dl.bizright.jp/bh/bhButton.zip

23

// Main function

int main(int argc, char *argv[]) {

 struct timeval now;

 // Initialization of GPIO

 if (setupGpio() == -1) return 1;

 while (1) {

 sleep(1);

 // When the general-purpose button is pressed currently.

// Disable other general-purpose buttons for up to RESET_SEC

(5 sec.)

 if (currentButton != NULL) {

 gettimeofday(&now, NULL);

 if (RESET_SEC < now.tv_sec - currentButtonTime) {

 currentButton = NULL;

 }

 }

 }

 return 0;

}

// Initialization function of GPIO

int setupGpio() {

 // Initialization of WiringPi

 if (wiringPiSetupGpio() == -1) return -1;

 // Set to input mode

 pinMode(GPIO_UP, INPUT);

 pinMode(GPIO_DOWN, INPUT);

 pinMode(GPIO_RIGHT, INPUT);

 pinMode(GPIO_LEFT, INPUT);

24

 pinMode(GPIO_ENTER, INPUT);

 // Set to PULLUP mode

 pullUpDnControl(GPIO_UP, PUD_UP);

 pullUpDnControl(GPIO_DOWN, PUD_UP);

 pullUpDnControl(GPIO_RIGHT, PUD_UP);

 pullUpDnControl(GPIO_LEFT, PUD_UP);

 pullUpDnControl(GPIO_ENTER, PUD_UP);

 // Detect the status change of GPIO and perform the interrupt process.

 wiringPiISR(GPIO_UP, INT_EDGE_BOTH, &isrUp);

 wiringPiISR(GPIO_DOWN, INT_EDGE_BOTH, &isrDown);

 wiringPiISR(GPIO_RIGHT, INT_EDGE_BOTH, &isrRight);

 wiringPiISR(GPIO_LEFT, INT_EDGE_BOTH, &isrLeft);

 wiringPiISR(GPIO_ENTER, INT_EDGE_BOTH, &isrEnter);

 return 0;

}

// Interrupt function of up button

void isrUp() {

 isrButton(GPIO_UP, "up");

}

// Interrupt function of down button

void isrDown() {

 isrButton(GPIO_DOWN, "down");

}

// Interrupt function of right button

void isrRight() {

 isrButton(GPIO_RIGHT, "right");

}

// Interrupt function of left button

void isrLeft() {

 isrButton(GPIO_LEFT, "left");

25

}

// Interrupt function of enter button

void isrEnter() {

 isrButton(GPIO_ENTER, "enter");

}

// Interrupt function of button

void isrButton(int pin, char *button) {

 int read1, read2;

 struct timeval now;

Prevent malfunction from chattering, obtain the value of GPIO 2 times at the

interval of BUTTON_USLEEP(0.05 sec), then show the button names only if

they mach.

 read1 = digitalRead(pin);

 usleep(BUTTON_USLEEP);

 read2 = digitalRead(pin);

 if (read1 == 0 && read2 == 0) {

 if (currentButton == NULL) {

 gettimeofday(&now, NULL);

 currentButtonTime = now.tv_sec;

 currentButton = button;

 printf("%s¥n", button);

 }

 } else if (currentButton == button && read1 == 1 && read2 == 1) {

 currentButton = NULL;

 }

}

Build command

gcc -lwiringPi -o bhButton bhButton.c

Execution command

sudo ./bhButton

26

When using Rpi.GPIO by Python

bhButton.py

coding: UTF-8

import RPi.GPIO as GPIO

import time

GPIO_UP = 17

GPIO_DOWN = 27

GPIO_RIGHT = 22

GPIO_LEFT = 24

GPIO_ENTER = 25

BUTTON_SLEEP = 0.05

Interrupt function of button

def gpio_callback(channel):

Prevent malfunction from chattering, obtain the value of GPIO 2 times at the

interval of BUTTON_USLEEP(0.05 sec), then show the button names only if

they mach.

 value1 = GPIO.input(channel)

 if value1 == 1:

 return

 time.sleep(BUTTON_SLEEP)

 value2 = GPIO.input(channel)

 if value2 == 1:

 return

 if value1 != value2:

 return

 if channel == GPIO_UP:

 print('up')

 elif channel == GPIO_DOWN:

 print('down')

 elif channel == GPIO_RIGHT:

27

 print('right')

 elif channel == GPIO_LEFT:

 print('left')

 elif channel == GPIO_ENTER:

 print('enter')

Set INPUT mode, PULLUP mode

GPIO.setmode(GPIO.BCM)

GPIO.setup(GPIO_UP, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(GPIO_DOWN, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(GPIO_RIGHT, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(GPIO_LEFT, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(GPIO_ENTER, GPIO.IN, pull_up_down=GPIO.PUD_UP)

Detect from the change of GPIO value (from 1 to 0), perform interrupt

processing.

GPIO.add_event_detect(GPIO_UP, GPIO.FALLING)

GPIO.add_event_detect(GPIO_DOWN, GPIO.FALLING)

GPIO.add_event_detect(GPIO_RIGHT, GPIO.FALLING)

GPIO.add_event_detect(GPIO_LEFT, GPIO.FALLING)

GPIO.add_event_detect(GPIO_ENTER, GPIO.FALLING)

GPIO.add_event_callback(GPIO_UP, gpio_callback)

GPIO.add_event_callback(GPIO_DOWN, gpio_callback)

GPIO.add_event_callback(GPIO_RIGHT, gpio_callback)

GPIO.add_event_callback(GPIO_LEFT, gpio_callback)

GPIO.add_event_callback(GPIO_ENTER, gpio_callback)

while 1:

 time.sleep(1)

Execution command

sudo python bhButton.py

28

22. Sample of source of program using General-purpose LED

Sample source of grogram blinking general-purpose LED.

This sample source can be downloaded from below

http://dl.bizright.jp/bh/bhLED.zip

When if use “Wiring Pi” by C language

bhLED.c

#include <stdio.h>

#include <wiringPi.h>

#define GPIO_LED 12

int setupGpio();

// Main function

int main(int argc, char *argv[]) {

 // Initialization of GPIO

 if (setupGpio() == -1) return 1;

 while (1) {

 // Lights general-purpose LED

 digitalWrite(GPIO_LED, 0);

 // 0.5 sec. sleep

 delay(500);

 // Turn-off general-purpose LED

 digitalWrite(GPIO_LED, 1);

 // 0.5 sec. sleep

 delay(500);

http://dl.bizright.jp/bh/bhLED.zip

29

 }

 return 0;

}

// Initial function of GPIO

int setupGpio() {

 // Initialization of WiringPi

 if (wiringPiSetupGpio() == -1) return -1;

 // Set OUTPUT mode

 pinMode(GPIO_LED, OUTPUT);

 return 0;

}

Build command

gcc -lwiringPi -o bhLED bhLED.c

Execute command

sudo ./bhLED

30

When using RPi.GPIO by Python

bhLED.py

coding: UTF-8

import RPi.GPIO as GPIO

import time

GPIO_LED = 12

Set OUTPUT mode

GPIO.setmode(GPIO.BCM)

GPIO.setup(GPIO_LED, GPIO.OUT)

try:

 while 1:

 # Lights general-purpose LED

 GPIO.output(GPIO_LED, 0)

 # 0.5 sec. sleep

 time.sleep(0.5)

 # Lights general-purpose LED

 GPIO.output(GPIO_LED, 1)

 # 0.5 sec. sleep

 time.sleep(0.5)

finally:

 # Reset GPIO

 GPIO.cleanup()

Execute command

sudo python bhLED.py

31

23. Revision Histories

Date of

update

Version Contents

2020/4/27 1.6 1st edition

